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Introduction

• Galactic cosmic rays occur everywhere in space

• Solar particles and the earth’s trapped radiation belts affect the 
space radiation environment near the earth.  More intense 
trapped belts occur at Jupiter.

Trapped Particles
Protons, Electrons, Heavy Ions

Nikkei Science, Inc. of Japan, by K. Endo

Galactic Cosmic Rays

Solar Protons
&

Heavier Ions



2008 Detector Workshop 3

Distinctions between Fundamental Mechanisms

Integrated effects of many particle interactions
– Charge trapping effects (total dose damage)

– Bulk damage (atoms are displaced, decreasing minority 
carrier lifetime)

Effects from a single energetic particle
– Generates small, spurious charge pulses within electronics

– Can produce transient and permanent effects

– First noted in 1975 in operating spacecraft, and has become 
increasingly important as devices have evolved

D. Binder, E. Smith and A. Holman, IEEE Trans. Nucl. Sci., p. 2675, Dec. 1975

The high total dose levels are the 
distinguishing feature
of the Europa mission
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Outline 

Space Radiation Environment I:  Integrated damage effects

Total Dose Damage

MOS transistors and CMOS

Bipolar devices

Displacement Damage

Lifetime damage

Displacement damage in linear integrated circuits

Displacement damage in optoelectronic devices

Summary and Conclusions
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Ionization:  Production of Electron-Hole Pairs

Total dose (absorbed dose), is measured in rads

1 rad = 100 erg per gram of material

The net effect depends on how the excess charge is rearranged before 
coming to equilibrium

- Electrons are mobile, and migrate quickly to 
interface regions

- Holes migrate much more slowly, in the opposite direction of 
electric fields that are present in the insulator

- Traps form at interface regions after hole migration, which is 
the most important mechanism for total dose damage

Energy to create an e-h pair:
~ 3.6 eV in silicon
~ 18 eV in silicon dioxide

Conduction
band

Valence
band e e e e e e

e

e
3.6 eV from electro-
magnetic interaction

+

Electron raised
to conduction band

Corresponding hole
in valence band
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Environment

Trapped Radiation Belts – a steady source of radiation
– LEO orbit (300 to 1400 km):  protons in the South Atlantic Anomaly
– MEO orbit (1400 to 4000 km):  protons in the trapped belt
– Geosynchronous orbit:  electrons in the outer trapped radiation belt
– Jovian belts:  high-energy electrons with very high total dose levels

Solar Flares – an erratic radiation environment
– LEO orbit
– Geosynchronous orbit (and deep space)
– Depends on the probability of encountering large solar flares

For Europa we can ignore the total dose component of 
solar flares (except for peak flux) because the total 

dose level in the jovian belts is so high
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Typical Total Dose Levels for Various Orbits and Missions 
[surface dose per year]

Earth (nearly all from trapped particles)
– LEO (ISS - Shuttle) ~ 2 krad (protons)
– MEO ~ 100 krad (protons and electrons)
– GEO (GOES) ~ 10 krad  (electrons)
– Transfer  (CRRES) ~ 50 krad (protons and electrons)

Mars (all from flares)
– Surface ~ <1 krad  (heavy particles)
– Orbit ~ 5 krad  (protons)
– Transit ~ 5 krad  (protons)

Jovian
– Exploration orbits ~ 100 krad –100 Mrad 

(electrons and protons)

Jovian missions have extremely high radiation levels 



2008 Detector Workshop 8

Total Dose Effects in MOS Gate Oxides

Ionization produces electron-hole pairs within the gate

Holes are trapped at oxide-silicon interface
– Changes gate threshold voltage
– Two types of traps:  hole traps and interface traps

n+ n+

Source Drain

VG

- -
+

+ ++ +

+

+

Electron-hole pairs
from ionization in gate oxide

Holes are trapped
at interface between
gate oxide and channel
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Threshold Shift in NMOS Transistors with Thick Gate 
Oxides

Ionization damage causes a negative shift in gate threshold voltage, 
eventually preventing the device from turning “off” unless a negative 
gate voltage is applied
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Oxide Trapping Depends on the Oxide Thickness

Scaling has reduced total dose damage in the thin gates that 
are typical of modern processes

Gate Oxide Thickness (nm)

2

-0.01

-1

-0.1

∆V
T

/k
ra

d

-0.001
10 100

Tunneling
reduces charge
trapping for thin

oxides

Power
MOSFET

2 µm
CMOS

0.6 µm
CMOS

Tunneling results after N. Saks, et al., IEEE Trans. Nucl. Sci., 31(1249) 1984.



2008 Detector Workshop 11

Cross Section of an MOS Transistor in an Integrated 
Circuit:  Note the Isolation Regions

A silicon-dioxide region is used for lateral isolation in bulk 
CMOS

Total dose can increase leakage current in the isolation region
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Field Oxide Leakage
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- Field oxides are much thicker than 
gate oxides

- Field-oxide leakage can be the 
dominant failure mechanism for 
commercial processes, causing a large 
change in leakage current

-The example shows charge trapping in 
a conventional field oxide 
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Total Dose Damage in Bipolar Transistor Used on the 
Cassini Spacecraft
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We know how to select
transistors that do not have 

the extreme total dose 
sensitivity of the 2N3700 
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Internal Transistors in Bipolar Integrated Circuits

Basic process is rated for 36 V (legacy condition)

Optimized for npn transistors

The two pnp transistors are “compromises” that 
do not require extra processing steps



2008 Detector Workshop 15

Enhanced Low Dose Rate Damage (ELDRS)

Damage in linear integrated circuits can be much more severe 
at low dose rates

The “compromise” pnp transistors are the most sensitive to this 
effect
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A More Extreme Example:  OP-42 Op-Amp
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Lot Variability of Total Dose Degradation of a Voltage 
Regulator
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Linear circuits 
designs can be very 
complex.  Recent 
results have shown 
that certain types of 
voltage regulators 
are extremely 
sensitive to total 
dose damage.

The damage varies 
considerably 
between different 
production lots

T. F. Miyahira, et al., 2005 Radiation Effects Data Workshop, p. 127.
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Dealing with the Low Dose Rate Problem

Bipolar Integrated Circuits Must Be Tested at Low Dose Rate
Time consuming, but necessary
Hardened parts are available from some manufacturers
Data base results are not reliable:  testing problems and device 

variability affect results

Some Bipolar ICs Do Not Exhibit ELDRS
High-performance vertical pnp transistors eliminate the need for thick 

isolation oxides
Some conventional linear processes are also immune to ELDRS

Example:  Analog Devices
Very little ELDRS effect for many of their devices
However, extreme sensitivity for op-amps with JFET input 

stages
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Warnings  and Common Misperceptions

- “Off” circuit (no applied bias) does not mean that no damage will occur
- Linear IC’s can exhibit more damage when unbiased
- Discrete transistor damage is about a factor of two lower when unbiased
- CMOS bias effects are very complex

Generally some improvement when parts are unbiased
Needs to be checked on part-by-part basis

- Radiation data is not “generic”
- Do not assume that data from one manufacturer applies to same part type 

from another manufacturer
- Radiation response may change as manufacturing process evolves

- Characterization data must encompass use conditions
- Example: linear IC data with +/- 15V power supplies cannot be used for 5/0 V

applications
- Total dose data bases are of limited value except for initial part selection
- ELDRS must be accounted for in all bipolar and BiCMOS technologies
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Total Dose Testing

Test Standards Were Originally Based on Military Environments
– High dose rate was mandated, and used for many years
– Low dose rate effects were not discovered until 1991, even though 

the same part technology  had been in production for more than 20 
years

Problem 1:  Low Dose Rate
– Bipolar:  test at low dose rate (10 mrad/s or less)

• Straightforward, except that tests are time consuming
• Many workers “cheat”, using higher dose rates

– CMOS:  complex test methodology
• Over-test to 1.5 times required level
• Anneal at 125 C to allow trapped hole annealing, and test devices
• Problem:  only provides data at a single total dose level

Problem 2:  Gamma Rays Are Inappropriate for Space

– This leads to the next topic, displacement damage
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Dealing with the Total Dose Problem

Testing and qualifying devices at these radiation levels is difficult 
and expensive
“Archival” data is indicative only
Tests on specific lots used on the mission are required

Shielding is a difficult option because of the mass penalty
The mission is planning on three different levels

1 Mrad (100 mil shield)
300 krad (additional shielding)
100 krad (limited to as few cases as possible)

The Europa project takes care of the costly issues of 
testing and qualification of parts on the APML

The APML is the preferred solution to the high total 
dose problem
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Displacement Damage

Effects of Displacement Damage in Semiconductors
– Minority carrier lifetime is degraded

• Reduces gain of bipolar transistors
• Also affects optical detectors and some types of light-emitting diodes
• Effects become important for proton fluences above 1010 p/cm2

– Mobility and carrier concentration are also affected
• Only important for high fluences

Particles Producing Displacement Damage
– Protons (all energies)
– Electrons with energies above 150 keV
– Neutrons (from on-board power sources)

Incident
particle
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Energy Dependence of Displacement Damage in Silicon
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The gradual increase in displacement 
damage effectiveness for electrons 
allows us to test devices at lower 
energies and calculate the net effect in 
the environment
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Dealing with the Energy Dependence

Usually displacement damage tests are done at only a single 
energy
– Too costly to use multiple energies
– Proton test data can generally be used in lieu of electron data

The effect of the damage is determined by weighting the 
damage in each energy interval, and integrating the weighted 
values over the energy spectrum

Non-ionizing energy loss (NIEL) is used to normalize damage 
from different energies and particle types
– Useful concept, but not always accurate
– NIEL describes displacement energy process, not the net damage 

in devices
– Annealing is very important, and can affect the results
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The wide base 
pnp transistors 
in linear ICs 
are very 
sensitive to 
displacement 
damage 

B. G. Rax, et al., IEEE Trans. Nucl. Sci., 45(2632 (1998).
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Displacement Damage in a Hardened Op-Amp
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This shows that their 
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Active region

GaAs

Displacement Damage in Optoelectronic Devices

We will use 50 MeV 
protons as a reference 

point for discussing 
displacement damage in 

photonic devices
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Carrier Transport Lengths

Recombination centers
reduce minority carrier
lifetime and diffusion
length

Described by
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Light Absorption in a Basic Silicon p-n Photodiode
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Degradation of Silicon Detectors
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Charge Coupled Detectors

These results show how a fluence of 1010 p/cm2 affects charge 
coupled detectors
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Displacement Damage in Light Emitting Diodes:  
Amphoterically Doped LEDs

Highly doped device, causing offset between absorption and 
emission spectra within the LED (good efficiency)
Growth process results in very wide active region (~ 50 microns)
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Degradation of Light-Emitting Diodes
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Summary of Optoelectronic Issues

Permanent damage in light emitting diodes is an important 
problem
– Ended Topex-Poseidon mission 
– Also affected Galileo tape recorder (Jupiter) during last orbit
– Avoid amphoterically doped LEDs

Detector degradation can also be important

Optical fibers are relatively resistant to damage unless long fiber 
lengths are involved, or very low temperature
– Damage mechanism is formation of color centers, not displacement 

damage
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Outline (continued):  SEE Effects

Space Radiation Environment II:  Single-particle effects

Single-Event Upset Mechanisms

SEU in CMOS

Basic SEU effects

SEU Effects in complex circuits

Effects of device scaling

Catastrophic SEU Effects

Latchup

SEGR and SEB

Unlike total dose, the SEE 
problem for Europa is not 
very different from other 
mission in deep space
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Galactic Cosmic Rays

Extremely energetic particles
– Produced by inter-galactic acceleration
– They occur everywhere in space

GCR particles produce an intense  
track of electron-hole pairs along 
their path

Charge collected in p-n junctions 
can cause a basic storage cell to 
change state (SEU) 

Charge ~ Z2

+
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+
-

+
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+

+
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+
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n

p-substrate+
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Incoming
particle

Note the longer path length for strikes at angle
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Other Properties

Standard Units:

MeV-cm2/mg

Slight modulation by solar activity 

– (4X higher during solar minimum )

Strikes at angle produce more charge 

~ 1/cos (Θ) 

In silicon, 1 MeV-cm2/mg ~ 0.01 pC/µm
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Linear Energy Transfer for Heavy IonsIntegral Cosmic Ray Spectra in Deep Space
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Upset in an SRAM Cell

"1"
"0"

“Off” NMOS
device is the

most sensitive
node

Charge collected
in drain region
causes “off”

device to turn onUpset occurs 
if the collected 
charge is 
above the 
critical charge 
for the circuit 
(Qc)
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Experimental Cross Section Curve for Registers in a 
Microprocessor

Each data point corresponds to a different ion beam 

The key parameters are the threshold LET and saturation cross 
section
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Rate Calculations
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Rate depends on convolution 
of cross section and particle 
LET spectrum, along with the 
geometric effects of the 
charge collection geometry

Computer programs are 
available to perform rate 
calculations

The CREME96 code (NRL) is one example of a code for rate calculations
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Approximate Rate Estimations in Deep Space

The upset rate in this figure corresponds to a saturated cross 
section of 1 cm2

For a real device, 
multiply the rate 
per day by the 
measured 
saturation cross 
section 

We are assuming a 
step function for 
the cross section 
vs. LET curve in 
this example
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Error Detection and Correction
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Functional Interrupts in a More Advanced DRAM
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Modern DRAMs are more complex, increasing the “SEFI” cross section 
to the point where it is only 1000X lower than the total cell upset rate

Detecting functional 
interrupts is a major 
issue for advanced 
DRAMs when they 
are used in space 
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Circuit Technologies where SEFI Is Important

Advanced Memories
– Internal test modes
– Micro-programmed cell architecture

Flash Memories
– Dominant effect
– “Crashes” internal state controller and buffers

Xilinx Programmable Logic Arrays

Microprocessors
– Many categories of responses
– Detection and recovery are very difficult problems
– “Crashes” and “Hangs” require restart
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Microprocessors

• Microprocessors are highly sensitive to SEEs
• Even Radiation Hardened devices can exhibit upsets
• Threshold LET of commercial processors is ~ 2 MeV-cm2/mg

• CACHE and Register Upsets (SRAM)
• Corrupt data and instructions
• Internal transients in high-speed logic

• Program can execute incorrectly, calculate something wrong, or hang 
the processor (may require “cold boot”)

• Microprocessors are very hard to test because not every SEE will result 
in an observable error
• Application dependent

Mitigation
– Triple or more (in case of hangs) redundancy voting
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Continuing Issues for Computer Systems

Complex errors and “hangs” in processors

Errors in key components such as the bridge chip

Complex memory errors that may not be amenable to EDAC

Increased error rate at high clock speed

SOI Power PC 7455

350 MHz
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F. Irom and F. Farmanesh, IEEE Trans. Nucl. Sci., 51(3505), 2004.
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Catastrophic SEU Effects

– Latchup in CMOS

– Gate rupture and breakdown in 
power devices
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Basic CMOS Structure

Lateral isolation provided by field oxide (or trench, for newer 
devices)
Vertical isolation relies on reverse-biased p-n junctions

PMOS Transistor

p+

p-Well

p+ Substrate

n+ p+

n-Well

Boron from substrate
diffuses, creating a

transition zone

n+

NMOS Transistor
The parasitic p-n 
isolation junctions 
are responsible for 
latchup in CMOS
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Single-Particle Latchup
(triggered by ions in space)

Substrate
Contact

Well
Contact

p-substrate

n + n +p + p + p + n +

rbv rsv

rsl rbl rs

V

n-well

Latchup creates a 
low-resistance 
path from power 
supply to ground

Current remains 
high until power 
is removed

Current path is 
highly localized
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Thermal Imaging of a CMOS Devices During Latchup

Yellow color shows 
regions with high 
temperature

Latchup current 
(several hundred 
mA) flows in the 
small region at the 
left corner
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Consequences of Latchup

Three Possible Consequences:

– Instant, catastrophic device failure
• Metallization vaporization
• Contact or wire bond failure
• Melting of underlying silicon

– Latent damage that affects reliability
• Metallization re-crystallization and weakening of metal bonds
• Ejection of vaporized metal creating localized voids

– Device returns to normal operation after a power cycle with no 
obvious internal damage 

Many Modern Devices Are Susceptible to Catastrophic Damage
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AD9240 Latent Damage

Melting occurred in a 
metal-1 trace during 
latchup

The trace was not 
designed to handle 
the higher current 
that takes place 
during a latchup 
event

In this example, 
metal was ejected, 
but the trace still 
conducted

H. Becker, et al, IEEE Trans. Nucl. Sci., 49(3082), 2002.
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Dealing with Latchup

All CMOS Devices (except SOI) Are Potentially Sensitive to 
Latchup
– Changes in fabrication technology can occur that change latchup 

characteristics
– In most cases radiation testing must be done for specific lots used 

on systems
– Radiation-hardened parts are usually acceptable without additional 

testing

Radiation Testing May Show that the Latchup Probability Is Low 
Enough for Mission Requirements
– Often the case when the LET threshold is ~ 50 MeV-cm2/mg or 

more
– Latchup circumvention may be acceptable if very few events are 

anticipated during the mission
– Difficult and costly to validate circumvention methods
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SEL Detection and Mitigation

Detection circuits can’t detect all latchup events
– Need “headroom” for current fluctuations during normal operation
– There are many different internal latchup paths in most circuits, with 

different characteristics and current signatures

Current shutdown may not be fast enough
– Capacitors on circuit boards provide localized charge

– Latent damage can take place within a few microseconds

Practical limitations are imposed by
– Unit-to-unit variability in latchup current and operating 

current
– Effect of temperature and aging on device operation
– Temperature and LET sensitivity of latchup characteristics
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Catastrophic Failure in Power Devices
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Gate Rupture

Gate is destroyed by an ion strike 
near the gate edge

Effect is worse for normal 
incidence

Very strong voltage dependence

Weak temperature dependence

Cross section is usually very 
abrupt

Large numbers of parts are 
required for testing

• Gate voltage
• Supply voltage

Drain

Gate

p+ p+
p p

n+n+

n-epilayer

n+ substrate

Ion
Strike

Source

A similar mechanism, single-event burnout,
occurs in bipolar power transistors. 
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Representative Test Results for a Moderate Voltage 
Power MOSFET

Gate rupture can 
be eliminated by 
operating the 
device at reduced 
voltage

Additional 
allowance must be 
made for unit-to-
unit variability 
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Part De-rating Is Effective for SEGR and SEB

Usual practice is to reduce maximum drain voltage to 75% of 
drain voltage where parts are affected during testing
– E.g., if SEGR takes place at 140 V for “200 V part”, reduce 

maximum application voltage to 105 V
– Gate and drain voltage both affect results

Hardened power MOSFETs are available, and are 
recommended for most space applications

Devices with high voltage ratings are more susceptible, and 
require larger fractional derating
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Summary

Hardened microelectronic devices are the preferred technologies 
for Europa because of the very high total dose requirement
– Some commercial technologies will be used as well
– The APML provides the best path for part selection
– Costs and other challenges make it difficult to test and qualify parts

Single-particle effects are similar to that of other missions
– They are still important, particularly because of the long mission 

duration
• Complex functional responses are particularly difficult
• Systems and circuits must be able to recover from their effects

– Catastrophic effects (latchup and SEGR/SEB) are the most 
important overall issues
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